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Visualization of Hyperspectral Images

for Spectral Analysis
Pai-Hui Hsu' Yi-Hsing Tseng?

ABSTRACT

Some visualization techniques are used to analyzing and exploring the data set of hyperspectral
images. The major objectives of data analysis are to summarize and interpret a data set, describing the
contents and exposing important features. For dimensionality reduction of hyperspectral images,
visualization can play an important role in illustrating the characteristics of high-dimensional data set.
Data projection is one of the common visual ways to get the interesting subsets of the original data,
and certain properties of the structures can be preserved as faithfully as possible. An effective
visualization tool called statistics images displays the second-order statistics of hyperspectral images
as a pseudo colored maps. In addition, the multi-scale approaches. such as scale space and wavelet
analysis are used to visualize the hyperspectral cufve in a time-scale plane. These techniques of
visualizations will help us to explore the whole data set and extract useful features for further

applications such as data representation classification and compression in the future.
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1. Introduction a laboratory-like spectral curves describe key

bsorption features of materials which can help us

The first step to deal with hyperspectral to understand the - physical or chemical

data is visual interaction with hyperspectral properties of atmospheric variations. The data

images and their statistical properties (Goetz et distributions  shown in Figure 1(b) also

al., 1985). The major objectives of visualization intuitively reveal the discriminating information

are to i i et a data set . . .
summarize and interpret a data set, among different materials. These two simple

describing its contents, and exposing important examples reveal that visualization may play an

features for specified applications. For example, important role in analyzing and exploring large

Figure 1(a) provides a direct perceptiveness amount of data and allows A8 to \apply out

through the variations of the spectral curves. The perceptual abilities to study the data content.
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However, hyperspectral data can be very subtle
in the analysis of visualization ‘(Schowengerdt,
1997) not only due to the limitation of our
intuition in multi-dimensional world but also the’
“curse of dimensionality” of high-dimensional
data (Bellman, 1961).

In this study, some graphical methods
which have been proposed to visualize the
high-dimensional data in the last decade are
introduced. In these methods, some apparent
data values extracted from original data set are
generally mapped into one figure for specified
applications. . One of the simplest ways for
visualizing: high-dimensional data. is data
projection in which the interested subsets .are
selected from the original data, and certain
properties of the structure of the data sets can be
preserved as faithfully as possible. Another
effective visualization tool called statistics
images for  second-order
hyperspectral images was proposed by Lee and
Landgrebe (1993). In this method, the class
covariance is displayed as a pseudo colored
maps. In addition, the multi-scale approaches
such as scale space (Piech and Piech, 1987; 1989)
and :wavelet -analysis (Hsu, 2000a; 2000b) are
used to visualize the hyperspectral curve in a
time-scale plane. In these two methods, the
original hyperspectral data is transformed into
another data space and can be represented by
symbolic description. These - techniques of
visualizations will help us to explore the whole
data set and extract useful features for further
such ~ as .data

applications representation

statistics  of

classification and compression. Finally, an
AVIRIS ‘data set with many different classes is
used to demonstrate the ways of visualization

and symbolic description.

2. Visualization for Data
Projection

Landgrebe  (1997) illustrated three

representation spaces to view multispectral data
quantitatively (Figure 2). The image Sspace
shown

in Figure 2(a) reveals the spatial

information and the relationship of neighboring

‘pixels of a hyperspectral image. The spectral

~space shown in Figure 2(b) demonstrates the

spectral  signatures of  different classes
respectively. And, Figure 2(c) shows the feature
space in which a pixel associated with n-band
measurements is viewed as a point, i.e., a vector
in an n-dimensional space. These representations
are still useful for hyperspectral data. In this
sfudy, some extended methodé of thesé
visualization techniques are described as below
subsections to characterize ‘the -khyperspectral

images.
2.1 Spatial-Spectral Space

_ Showing data in the RGB image space
(Figure 2(a)) directly offers a visual way to
understand the spatial variation of the scene and
the relationship between an individual pixel and
the land cover class it belongs to. Tasks of
manual image interpretation are usually carried

out in the image space. However, the RGB
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image only shows the spatial information of
three bands represented by Red, Green and Blue
colors. The large volume of hyperspectral data
permits displaying all the bands sequentially in
rapid succession, which is called a “spectral
movie” (Schowengerdt, 1997). Detecting unique
signatures and previewing rapidly the data
before processing are two major benefits of the
dynamic visualization.

- The spectrai slice which is also called
spatial spectrogram (Schowengerdt, 1997)
combines the spatial information and spectral
profiles- extracted from a hyperspectral image.
Figure 3(a) shows a.spectral slice over two
mainly apparent patterns corresponding to two
different classes. The vertical direction
corresponds to the spatial dimension of the
image being slices, the horizontal direction

corresponds to the spectral dimension, and the

pseudo color shows the spectral density (the

values of reflectance or radiance). In Figure 3(a),
the red color appeared in the near-infrared
region of the spectral slice correspond to the
pixels belonging to the green vegetations. The
dark color of the spectral slice is caused by the
water absorptions bands. A hyperspectral image
can be also viewed as a 3D image cube, whose
face shows the spatial dimensions and the depth
presents the spectral band (or wavelength). A 3D
image cube can be viewed perspectively as
showing the face with the spectral slices of the
top row .and right column. An example of 3D
image cube of the AVIRIS data set is shown in
Figure 3(b).

2.2 Spectral Space

The spectral response of a material forms a
unique’ spectral signature of the reflectance or
radiance. It can be represented by a function of
wavelength. Spectral response of a material,
therefore, can be drawn as a spectral curve in the
spectral space (Figure 1(a)). Theoretically, each
class composed of different material has its own
shape and variances of the spectral curve. Some
methods like “Spectral Matching” and “Spectral
Angle Mappér (SAM)” ‘use this important
property to distinguish an unknown specfral
curve comparing with a series of pre-labeled
spectral curves (Kruse et al.; 1993). Figure 4
shows the spectral curves of five different land
cover types. Some basic statistics ‘such as mean
and standard derivation for each band caﬁ be
calculated to depict the characteristics of the
spectral distribution. The méan curve'representsv
the trend of the spectral variation. The standard
deviation curves show the Scattering with
respect to the mean. The maximum and the
minimum values present the rangev of spectral
variation at a particuia.r waveléngth. Different
spectral signatures can be portrayed on one
spectral space for the purpose of comparison.
Through interactively plotting the spectral
spectrum in the spectral space, one fnay rapidly
locate the pixels similar

having spectral

signatures (Goetz et al., 1985). This is
particularly helpful to create or verify the
training areas in the scene for supervised
classifications. ' a

Different spéctral curves can be plotted
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together in one spectral space for comparison. In
Figure 5, five different spectral signatures are
superimposed together. It is easy to compare the
magnitude of the reflectance values and the
variations of the spectral curve of different
materials in the superimposed spectral space.
The spectra can also be stacked with an offset

vertically to allow interpretation (Figure 6).

2.3 Scatter Plots

The Scatter plot is one of the oldest and
most commonly used methods to project
high-dimensional data to a 2D space. A
multispectral image is viewed with n(n—1)/2
scatter plots of pair-wise parallel projection,
where n is the dimensionality of the
multispectral image. Each scatter plot provides a
general impression of the spectral correlation
between two selected bands from a data set.
Figure 7 shows a 2D scatter plot of five different
land-cover classes on band 20 and 50 of an

AVIRIS data set. One may instinctively obtain

the correlation between these two selected bands.

The pixels of one particular material class will
distribute closely in a scatter plot. Thus the
characteristics of classes can be interpreted
based on statistical pattern recognition (Swain
and Davis, 1978). For example, a
two-dimensional Gaussian density can be used
to characterize the distribution for each class,
and classification can be performed based on the
decision boundaries in a 2D scatter plot. In
Figure 7, the distribution of the “highway” class

is far away from the other distributions of

vegetation classes. Therefore, it is easy to

determine the decision boundary between
“highway” and other vegetations. Furthermore, a
2D scatter plot can be easily extended to a 3D
scatter plot of three selected bands. Figure 8
shows a 3D scatter plot on band 10, 20, and 50.
The 3D scatter plot can be rotated interactively
to show an appropriate view in a viewing
program.

In order to inspect the correlations between -
bands of three or more, the scatterplot matrix
can be used to represent all of the 2D scatter
plots simultaneously. Figure 9 shows a
scatterplot matrix containing all the pairwise
scatter plots of band 10, 20, 50 and 128 on a
single page. The diagonal plots of the scatterplot
matrix are simply 45-degree lines since data is
plotting band i verse band i. This reveals a point
of view in terms of showing the univariate
distribution of the variable. Figure 9 signals a
linear relationship between band 10 and 20
indicating that there exists redundancy between
these two bands. This provides a basic idea of
dimensionality reduction for hyperspectral
images. In additioh, separability analysis can be
applied in each scatter plot to select the salient
bands which are helpful for the classification of
hyperspectral image. For instance, the largest
average separability of the five classes is
apparent in the scatter plot of band 50 and 128.

When the number of bands is larger than 3,
spectra can also be thought of as points in an
n-dimensional scatterplot, where # is the number

of bands (Boardman, 1993). The coordinates of

the points in n-space consist of “n’’ values that
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are simply the spectral radiance or reflectance
values of a given pixel. The distribution of these
points in n-space can be used to estimate the
number of spectral endmembers and their pure
spectral signatures (Boardman et al., 1995).
Figure 10 shows an 8-dimensional Visualization
of the AVIRIS data which is created by the

n-Dimensional Visualizer™ tool provided by
Environment for Visualizing Images (ENVI)
software. The distributions of these points in
' n-space can be used to estimate the number of
spectral endmembers and their pure spectral

signatures.

2.4 Parallel Coordinates

The idea of using parallel coordinates as a
visualization method for multi-dimensional data
was firstly proposed by Insélberg (1981). In
traditional Cartesian coordinates such as the
scatter plot shown in Figure 7 and Figure 8, all
axes are mutually perpendicular. In Parallel
coordinates, as implied by the name, all axes are
parallel to one an(;ther and équally spaced. Thus
a specific point in n-dimensional space can be
represented by n Y-axis values which are
connected as a polyline along the X-axis. Figure
11 shows an example of the parallel coordinates
using five different materials from AVIRIS data
set. In Figure 11(a), the original spectral values
are put in each axis. In Feature 11(b), the
spectral values are normalized to the range of 0
to 1 for each axis. Some variations will be
exaggerated in the normalized axes. Data

structures, such as points, lines or hyperplanes in

high dimensional space R" can be projected onto

this two-dimensional graph for visualizing
analytic and synthetic geometry in R" (Inselberg,
1990). Viewed as a whole, the polylines in
parallel coordinates might. well exhibit some
apparent patterns which could possibly be
associated with inherent correlation of the data
sets. For example, the lines of a particular

materials cluster together in parallel coordinates,

maicaung a degree OI correlauon. 1ne
near-parallel lines between the adjacent axes
indicate a high correlation, and the X-shaped
structure between adjacent axes indicates an
inversely correlated.

Compared with scatter plots, the number of
dimensions that can be visualized by paraliel
coordinates is rather large, however it becomes
more difficult to perceive structures or clusters
as the axes get closer to each other. The main
difficulty of the parallel coordinates is that large
data set cluster

interpretation (Ward, 1994; Fau et al., 1999).

can cause difficulty in

Also, relationships between adjacent axes are
easier to perceive than between non-adjacent
axes.
Because the large band number of
hyperspectral spectral data, it is not possible to
plot the whole data in a parallel coordin‘ate. In
fact, the parallel coordinate is a simplified
spectral space with selected bands. However,
one may use this technique to inspect the results
of feature selection or extraction visﬁally. For
example, in Figure 11(b), the Chaparral and the
Forest

Broadleaf Evergreen appeared  a

symmetrical shape can be easily separated with
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the selected features.
3. Visualization for Data

Transformation

It would be helpful to analyze and quantify
the characteristics of hyperspectral data when
transformed into

the data set is some

mathematical or conceptual representation
spaces in which one may inspect the data set
from different viewpoints. The type of data
transformation may be linear oi non-linear that a
set of new data set would be created to reveal
spectral information as much as Iiossible. In this
section, we firstly introduce the statistics images
which represent the second order statistics of
hyperspectral images using pseudo colors. As a
glance, one may subjectively perceive how each
band is correlated and easily compare the
variances between difference classes. In addition,
the results of data transformation may also be
represented by way of symbolic description.
Spectral fingerprint is a familiar example of
symbolic description for the detection of
absorption features (Piech and Piech, 1987).

Finally, a new method which produces the

similar results to fingerprints using wavelet

transform was introduced (Hsu, 2000a; 2000b).

3.1 Statistics Images

The covariance or correlation matrix of a
set of hyperspectral data can be displayed as a
pseudo colored image, so that one can

sﬁbjectively perceive how much the bands are

correlated and easily. compare the statistics of

different classes (Lee and Landgrebe, 1993).

Figure 12 shows the pseudo images of
covariance and correlation = .matrices
corresponding to two different classes

respectively: the grassland and highway surfaces.
In Figure 12(a) and 12(b), the mean, the. positive
and negative standard deviations, and the.
maximum and minimuom of the spectra are
displayed together in the' spectral space. The
color of the covariance matrices shown in Figure
12(c) and 12(d) indicates the degree of
covariance between different bands. It can be
seen that the variances of the spectra of
grassland have the largest values in the portion
from red light to near-infrared (dark red color
from band 33 to bénd 74). Oppositeiy, the dark
blue colors appear in the portion from band 98 to
222 indicate small variances betwegn the
visible-near-infrared (VNIR) and short—Wave
infrared (SWIR) bands. On the other hand, the
variances of the spectra of road surfaice are
neaﬂy homogenous but the patterns formed by
different spectrdl regions are still apparent. The
correlation matrices shown in Figure 12(e) andb
12(f) indicate that adjacent bands are highly
correlated in a hyperspectral imé.ge, ie., the
information coritent is highly reduridant. It is,
theréfore, reasonable to perform a feature
extraction before the analysis of hyperspectral
images. In addition, the significant difference of
the correlation matrii between different classes
provides the classifier useful information to

distinguish a class from others.
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3.2 Spectral Fingerprints

A plot of fingerprints is a way of symbolic
description developed by Piech and Piech (1987;
1989) of the absorption bands in hyperspectral
data.._ The fingerprints are created based on a
scale space filtering of the hyperspectral data. A
scale space image is a set of progressively
smoothed version of the original spectral curve
which is usually calculated by the Gaussian
function. Fingerprints are then simply obtained
from the zero-crossings, of the second derivative
of the scale spﬁce image. As the smoothing scale
increase, the number of zero-crossings is
reduced until only a dominant spectral shape
remains. The net result of this scale space
analysis is thus a sequence of closed arches. For
the purpose of quantification of the fingerprint,
each closed arch' can be described by a
triplet (0,4, ,A;), where o is the scale at
which the arch closes, A, is the location of the
left arc, and A, is the location of the right arc.
Each triplet describes a spectral absorption
feature and contains a measure of importance of
the specfral feature within the triplet.'

The triplet descriptions demonstrate that
the Symboiic representation can make both gross
and fine distinctions between spectral features.
Figure 13 shows the results of three fingerprints
corresponding to three different kinds of
vegetations. Clearly, the fingerprint appears as a
pattém of closed arches. Each arch is composed
of a pair of zerd—cfossing contours which
corr’espo'n‘ds‘ to ‘a spectral absorption feature. The

representation is compact, selects and quantifies

features related to absorption bands, ranks
features according to their strength, and - is
capable of reliably extracting small features

(Piech and Piech, 1987).
3.3 Wavelet-Based Fingerprints

A new method which produces similar
fingerprints transform was

proposed by Hsu and Tseng (2000a, 2000b). The

using wavelet

wavelet transform has the ability to focus on the
localized signal structures using a zooming
procedure. When the scale s of wavelet function
varies from its maximum to zero, the decay of
the wavelet coefficients #k(u,s) characterizes
the regularity of x in the neighborhood of u. This
characteristic of multi-scale analysis is very
stmilar to the fingerprint method which is based
on the scale space filtering. This provides us the
idea for

essential the hyperspectral data

visualization and the detection of the absorption

features from the reflectance spectrum
automatically.
In the wavelet-based method, the

séale—space image is computed directly using the
continuous wavelet transform (CWT) instead of
the derivative computation following the
convolution by Gaussian filters. By detecting the
positions of modulus maxima of wavelet
coefficients calculated using the first or second
derivative of Gaussian function, the fingerprints
corresponding to the absorption features can be
easily delineated. Finally, a smaller number of
absdrption features can be both automatically

procéssed and physically interpreted. Besides,
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the method is also helpful for spectral analysis to
reduce the dimensionality of hyperspectral data.
Figure 14(a) and 14(b) respectively show the
wavelet coefficients represented by a pseudo
colored map using the 1% and 2™ derivative of
Gaussian function. Figure 14(c) and 14(d) show
the maximum lines of wavelet coefficients. By
detécting the positions of the local maxima from
the coarse to fine scale, we can obtain the
positions of the absorption feature of a
hyperspectral curve. The major advantage of this
method is that the localized signal structures of
absorption  features can be accurately
characterized by the zooming procedure of CWT.
Furthermore, a fast algorithm can be used for the
c‘omputation of the wavelet transform in order to

avoid the computation expense of direct

convolution (Mallat, 1999).

3. Conclusions

The high spectral resolution characteristic
of hyperspectral sensors preserves important
aspects of the spectrum and makes
differentiation of different materials on the
ground possible. However,. due to the high
dimensionality and high correlation between
spectral bands, traditional analysis approaches
do nof applicable to process the hyperspectral
imaggs. It is necessary to analyze the whole data
set before the processing of hyperspectral data.
The main objective of data analysis is to

summarize and interpret a data set, describing

the contents and exposing important features.

Visualization plays an important role in data
exploring and analysis. In this paper, some
projection methods are used to explore and
analyze the hyperspectral images. The features
can be selected intuitively from the scatterplots.
The endmembers can also be obtained from the
n-dimensional visualization. In addition, the
multi-scale approaches, such as the finger-prints
and wavelet transform are used to visualize the
hyperspectral curve in a time-scale plane. The
useful features such as the absorption features
then can be explored and extracted for further

applications.
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