
航測及遙測學刊  第二十七卷  第 1期  第 1-14頁  民國 111年 3月                                            1                                             
Journal of Photogrammetry and Remote Sensing 
Volume 27, No.1, 2022, pp. 1-14 
DOI：10.6574/JPRS.202203_27(1).0001 

1 Master, Department of Geomatics, National Cheng Kung University Received Date: Jan. 14, 2022 
2 Professor, Department of Geomatics, National Cheng Kung University Revised Date: Feb. 25, 2022 
3 Master Student, School of Civil Engineering, Purdue University Accepted Date: Mar. 04, 2022 
* Corresponding Author, E-mail: chikuei@ncku.edu.tw 

A Deep Learning Approach for Building Segmentation in Taiwan 
Agricultural Area Using High Resolution Satellite Imagery 

Liang-Yi Liu 1  Chi-Kuei Wang 2*  An-Te Huang 3 

Abstract 
Understanding buildings in agricultural area is important because the arable land in Taiwan is limited. One 

of the practical ways is manual digitization from high resolution satellite imagery, which can acquire satisfying 
results without field investigation. However, such practice is tedious and labour intensive. Given these reasons, 
past research devoted to deep learning approaches have shown that convolutional neural networks are useful for 
building segmentation using satellite imagery. In this study, ENVINet5 model was trained and utilized from high 
resolution Pléiades pansharpened imagery. The training images (with the size of 2500 pixels × 2500 pixels) were 
randomly selected from 9 counties/cities to increase diversity because each county/city has different building 
patterns. The performance of ENVINet5 model was evaluated based on pixels and polygons, respectively. The 
pixel-based evaluation showed that the trained model can find 84% of building pixels. The polygon-based 
evaluation was carried out through calculating the number of building segments and comparing them with the 
reference data using IoU (Intersection of Union). The results showed that 92% of building segments were found, 
and the IoU of most building segments range between 0.6 and 0.9. The trained model was validated on the testing 
images for the transferability test. Moreover, an image tiling and stitching technique was proposed to deal with 
large satellite imagery.  Finally, we compared the time costs of labelling with and without the aid of deep learning 
approach. The results showed that the time costs decreased by 7.3% with the help of deep learning approach. 
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1. Introduction 
Building segmentation from high resolution 

imagery has many applications such as urban planning 
and disaster management (Yang et al., 2018a). Due to 
various building shapes, color, and complex 
background in the satellite images, building 
segmentation is one of the challenging tasks in the field 
of remote sensing. With the rapid development of 
sensor technology, high resolution satellite imagery has 
become more accessible and affordable (Yang et al., 
2018b). Therefore, performing building segmentation 
from high resolution satellite imagery is widely applied 
to many studies (Li et al., 2019; Mou & Zhu, 2018; 
Huang et al., 2017).  

The existing approaches of building segmentation 
can be divided into two categories: pixel-based 
methods and object-based methods (Khosrav et al., 
2014). Pixel-based methods tend to perform better with 
images of coarse spatial resolution (Kaszta et al., 2016). 
However, such methods have difficulties dealing with 
high resolution imagery because of the pixel 
heterogeneity, mixed pixels, and spectral similarity 
(Esetlili et al., 2018). The performance using high 
resolution imagery by pixel-based methods often result 

in obvious salt and pepper effect (Blaschke et al., 2000). 
This problem can be solved using object-based method 
(Quynh Trang et al., 2016). In object-based methods, 
images are first segmented into the clusters of 
homogeneous pixels (objects), then the objects are 
classified with their spatial properties (Wu et al., 2017). 
Objects not only consider spectral features, but also 
include contextual and geometric features (Pu et al., 
2011). However, there are some problems when 
applying object-based methods. According to Radoux 
& Defourny (2008), classification results highly 
depend on the quality of segmentation, which relies on 
low-level handcrafted features (such as edges, corners, 
texture, shadow, and multispectral properties) in the 
remote sensing imagery. Accordingly, the 
representative ability is limited due to the lack of high-
level features (Shrestha & Vanneschi, 2018), which 
restricts the performance of the object-based methods. 

Over the past ten years, deep learning approaches 
have achieved state-of-the-art performance on image 
segmentation with convolutional neural networks 
(CNN) (Gu et al., 2017; Khan et al., 2020). CNN can 
effectively extract different levels of information 
including corners (low-level), object parts (mid-level) 
and the whole object (high-level) from remote sensing 
imagery through multiple convolutional layers 
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(Nogueira et al., 2016), and the performance is closer 
to visual interpretation in object recognition (Zhang et 
al., 2020). Besides, CNN is able to combine spatial and 
spectral information based on the input image without 
preprocessing (Alshehhi et al., 2017). Nowadays, deep 
learning approaches have been applied to the 
information extraction of remote sensing such as 
buildings (Chen et al., 2020). For example, SegNet was 
implemented to segment buildings in Boonpook et al. 
(2018) along riverbank using UAV images, and the 
overall accuracy reached more than 90%. Maltezos et 
al. (2017) extracted buildings with convolutional 
neural networks (CNN) based structure using 
orthoimages and additional height feature with dense 
image matching point clouds. The method 
outperformed linear kernel SVM and the RBF kernel 
SVM classifiers. A pretrained ImageNet network was 
transferred in Vakalopoulou et al. (2015) by integrating 
additional spectral information. The quantitative 
validation indicated high completeness and correctness 
rates.  

In this study, a deep learning approach was applied 
to segment buildings in Taiwan agricultural area from 
high resolution Pléiades satellite imagery. Buildings in 
the agricultural area include farmhouses, factories, 
residential housings etc. Since the arable land is limited 
in Taiwan, monitoring buildings in the agricultural area 
can understand the situation of land use. 

2. Method 

2.1 Data Pre-processing 
In this study, high resolution Pléiades imagery and 

the non-agricultural mask were utilized. Pléiades 
satellites provide multispectral (Figure 1(a)) and 
panchromatic imagery (Figure 1(b)), which are both 
stored in the 16-bit data type. The spatial resolution is 
2 meters for the color and the near-infrared bands, and 
the spatial resolution is 0.5 meter for the panchromatic 
band. The data include 142 Pléiades satellite images, 
which were acquired between the years of 2016 and 
2017. Non-agricultural mask was provided from 
Taiwan Agricultural Research Institute, and it was used 
to distinguish the agricultural area from the non-
agricultural area. Before training EVNINet5 model, 
Pléiades satellite images were pre-processed as follows. 
(1) Pan Sharpening: In order to obtain high resolution 

imagery with multispectral bands, nearest-neighbor 
diffusion-based (NNDiffuse) pan-sharpening 
algorithm was applied to fuse multispectral and 
panchromatic images. The algorithm was proposed 
by Sun et al. (2013), which can preserve the sharp 
spatial features from panchromatic images and the 
spectral information from multispectral images. 
NNDiffuse pansharpened image (Figure 1(c)) with 

high resolution and multispectral bands was 
obtained after fusion. 

 

 
Figure 1 Data pre-processing (a) multispectral image; 

(b) panchromatic image; (c) NNDiffuse 
pansharpened image; (d) agricultural area 
(denoted as pink) and non-agricultural mask 
(denoted as black); (e) NNDiffuse 
pansharpened agricultural image 

 
(2) Image Masking: Image masking is a useful 

technique that can restrict analysis to a subset 
region instead of using whole image scene 
(Kastens et al., 2005). In this study, we focused on 
the agricultural area in Taiwan; therefore, non-
agricultural area was masked out using non-
agricultural mask (Figure 1(d)). After image 
masking, NNDiffuse pansharpened agricultural 
image is shown in Figure 1(e).  

2.2 Study Area 
The study area is the agricultural area of Taiwan. 

ENVINet5 was trained using 500 sub-images from 
Miaoli to Taitung cities/counties clockwise, and it was 
tested using 10 sub-images from Taichung to Pingtung 
cities/counties counter clockwise (Figure 2). The size 
of the sub-image is 2500 pixels × 2500 pixels, and each 
of them was randomly collected. Collecting sub-images 
from different cities was to increase the diversity since 
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each county/city has different building patterns. The 
training images were randomly divided into the training 
sets and the validation sets with the proportion of 8:2. 
The testing images were used to test the transferability 
of the trained model.  
 

 

Figure 2 Study area 

 

2.3 Data Labelling 
Due to the high degree of variety of building 

patterns in the agricultural area, labelling results can be 
unstable depending on different labellers. Therefore, 
consistent labels as reference are necessary for 
ENVINet5 to correctly identify and segment the 
buildings. In this study, each building pattern was 
labelled as a building polygon as follows.  Firstly, 
shadow is excluded from the label (Figure 3(a)). 
Second, labels of the buildings, which is in contact with 
the non-agricultural area, were kept several pixels away 
from the non-agricultural area (Figure 3(b)). Third, 
adjacent buildings with no space in between (Figure 
3(c)) were labelled as one single building polygon since 
it was challenging to label each building separately. 
Fourth, buildings occluded by vegetation were kept out 
for the label (Figure 3(d)). 

2.4 Architecture of ENVINet5 
The model we used in this study is a U-Net 

(Ronneberger et al., 2015) based architecture called 
ENVINet5. It is a Deep Leaning module (v1.1) built in 
a commercial software ENVI (v5.6). ENVINet5 has the 
characteristics of U-Net. For example, it can be trained 
in an end-to-end fashion from few training images and 
yield precise segmentations.  Moreover, it includes 
concatenate operation by combining high-level 

semantic information and low-level detailed features. 
Since U-Net is one of the effective architectures in 
object segmentation (Soni et al., 2020), many studies 
also improved its architectures to perform building 
segmentation (He et al., 2020; Guo et al., 2020; Yi et 
al., 2019; Xu et al., 2018). In ENVINet5, four 
proprietary hyperparameters were introduced. Class 
Weight brings in a biased selection of patches, so the 
model can extract patches with more feature pixels. 
Next, Patch Sampling Rate can control the density of 
sampling. Because the feature pixels are often sparse 
comparing to the background pixels, high density of 
sampling rate can generate more patches with more 
feature pixels. Then, Loss Weight biases loss function 
to make more adjustment on identifying the feature 
pixels. Finally, Blur Distance helps the model to learn 
the building borders by blurring the edges and 
decreasing the blur during training (ENVI 
Development Team, 2020).  
 

 
Figure 3 Examples of different building patterns (first 

column) and their labelling results (second 
column) (a) a building with shadow; (b) a 
building in contact with non-agricultural area; 
(c) adjacent buildings; (d) buildings occluded 
by vegetation 

 
ENVINet5 was trained using the patch-based 

convolutional neural network. The input of ENVINet5 
is a patch with the agricultural buildings. And the 
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output is the probability map, where the pixel values 
range from 0 to 1 in the form of floating-point numbers. 
The brighter pixels denote higher probability, and the 
darker pixels denote lower probability. The architecture 
of ENVINet5 is shown in Figure 4. The network went 
through four times of downsampling and upsampling. 
It also merges high resolution features with low 
resolution features (the purple arrow shown in Figure 
4). 
 

 
Figure 4 The architecture of ENVINet5 

 
A patch is a certain region in the sub-image 

(Figure 5(a)), and a batch is a number of patches being 
trained for every iteration (Figure 5(b)). The parameters 
were updated in every iteration. In this study, the patch 
size was set as 512 × 512 pixels, and the batch size was 
set as 64. 
 

 
Figure 5 Illustration of a patch and a batch (a) a sub-

image with several patches (in red frame); (b) 
a batch of 64 patches 

 

2.5 Data Post-processing 
To obtain building segments from the probability 

map, four post-processing steps are carried out in the 
following steps. The example shown in Figure 6(a) and 
6(b) is adjacent buildings and its probability map from 
ENVINet5.  
(1) Thresholding: The probability threshold was set as 

0.6. If a pixel value is greater than or equal to 0.6, 

it is considered as a building pixel. Otherwise, it is 
a non-building pixel. The reason for setting the 
probability threshold as 0.6 were discussed in 
section 3.2. The probability map was then 
converted to the binary map (Figure 6(c)). 

 

 
Figure 6 Data post-processing (a) adjacent buildings 

shown in the pansharpened agricultural image; 
(b) probability map from ENVINet5; (c) 
binary map with building and non-building 
pixels; (d) vectorization result from binary 
map, where building and non-building 
polygons were due to building and non-
building pixels; (e) building polygon with 
holes; (f) building segment after filling holes 
in (e) 

 
(2) Vectorization: Vectorization was to acquire vector 

data from raster data. The process was completed 
using the “Raster to Polygon” tool in ArcMap 
(ArcGIS Development Team, 2019). The output 
produces polygons with smoothed outlines using 
its proprietary algorithm. After vectorization, 
building pixels and non-building pixels were 
vectorized to building and non-building polygons, 
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respectively (Figure 6(d)).  The process also 
assigned different codes (referred to as gridcode in 
ArcMap) to building polygons and non-building 
polygons. Building polygons were coded as 1, and 
non-building polygons were coded as 0. 

(3) Keep Building Polygons: The building polygons, 
where the code of 1, were kept using the “Make 
Feature Layer” tool in ArcMap. 

(4) Filling Holes of Building Polygon: Building 
polygon was left with several holes after removing 
the non-building polygons (Figure 6(e)). The 
appearance of the holes is mainly caused by 
shadow of the adjacent buildings; however, they 
are still part of the building. The holes were filled 
up using the “Eliminate Polygon Parts” tool in 
ArcMap. The threshold condition was the area of 
holes. If the area of each hole is less than 25 
percent of the building polygon, the hole will be 
filled up. The building segments (Figure 6(f)) were 
obtained after filling the holes. The building 
segments are polygons in the shapefile format. 

2.6 Evaluation 

2.6.1 Pixel-based Evaluation 
Confusion matrix and assessment indices are used 

to evaluate ENVINet5 model in the study. The 
assessment indices include accuracy, precision, recall, 
and F1 score. The model is evaluated with each sub-
image using the validation sets. In confusion matrix 
(Table 1), correctly predicted building and non-
building pixels are defined as true positive (TP) and 
true negative (TN); incorrectly predicted building and 
non-building pixels are defined as false negative (FN) 
and false positive (FP). 
 

Table 1 Confusion matrix 
Reference 

Prediction building pixel non-building 
pixel 

building pixel True Positive 
(TP) 

False Positive 
(FP) 

non-building pixel False Negative 
(FN) 

True Negative 
(TN) 

 
In assessment indices, accuracy is overall 

correctness including building pixels and non-building 
pixels. Precision is the ratio of correctly predicted 
building pixels within all positive prediction. Recall 
shows the proportion of reference building pixels being 
predicted. F1 score is a harmonic combination between 
precision and recall, which keeps the correctness of 
precision and completeness of recall value (Prathap & 
Afanasyev, 2018). The equations of assessment indices 

are listed below: 
 

Accuracy =    ............................ (1) 
 

Precision =    ....................................... (2) 
 

Recall =   ............................................. (3) 
 

F1 score =  × ×  .......................... (4) 
 

2.6.2 Polygon-based Evaluation 
In order to evaluate the quality of segmentation 

and calculate the number of the building segments, 
polygon-based evaluation was carried out. In Table 2, 
six different cases were considered. Case1 is omission 
building, which showed the model failed to segment the 
building. Case 2 is commission building, where the 
model mistakenly segmented non-building pixels as 
building. Case 3 is one-to-one correspondence, where 
the segmented building corresponded to one reference 
building. Case 4 is many-to-one correspondence, which 
means several buildings were segmented, and all of 
which corresponded to one reference building. Case 5 
is one-to-many correspondence, which means a 
building was segmented, and it corresponded to several 
reference building. Case 6 is many-to-many 
correspondence, where several buildings were 
segmented, and all of which corresponded to several 
reference buildings. For all the cases in this study, 
“many” indicates greater than or equal to 2. 

We overlaid the building segments with the 
reference buildings to count the omission and 
commission buildings. Then, the omission error rate 
(OER) and the commission error rate (CER) were 
computed using the formulas below. 
 
OER =            

    
× 100% ........ (5) 

 
CER =            

    
× 100% .... (6) 

 

Next, the quality of the building segmentation was 
evaluated for Case 3 to Case 6. We use IoU 
(intersection over union) to check the similarity 
between each building segment and reference building 
since IoU is the most common metric to compare 
similarity between two arbitrary shapes (Rezatofighi et 
al., 2019). The Value of IoU range from 0 to 1. If the 
value is closed to 1, the building segment has higher 
similarity with the reference building. The formula of 
IoU is shown below. 
 

IoU =    
   

  ............................... (7) 
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Table 2 Discussion of six different cases in polygon-based evaluation. The reference building and segmented 
building are denoted as red and blue polygons, respectively 

 
 
Since the IoU evaluation requires one-to-one 

correspondence, a filtering process is adopted for case 
4 to case 6 in order to identify representative 
correspondence between a building segment and a 
reference building (Figure 7).  

Table 3 shows examples of different IoUs. The 
first column is the values of IoU, and the second 
column is the pansharpened images. The last column 
shows the building segments (yellow) overly with the 
reference buildings (red). 
 

 
Figure 7 Filtering results for case 4, case 5, and case 6. 

The reference building and segmented 
building are denoted as red and blue polygons, 
respectively 

 
In the real world result, the many-to-many 

condition (case 6) can be far more complicated than the 
schematic drawing shown in Figure 7. An example case 
of three reference buildings and three segmented 
buildings is shown in Figure 8 to elaborate the 
workflow of the filtering process adopted in this study. 
Reference building (denoted as red) and building 
segment (denoted as blue) are abbreviated to R and S, 
respectively. The reference buildings R1, R2, and R3 
overlaps with S1 and S2. Five IoUs (IoU1 to IoU5) are 
calculated for each pair of overlapping polygons. 

 

 
Figure 8 Illustration of the filtering process 
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Table 3 Examples of various IoUs for different 
buildings 

 
 

Firstly, the filtering process started with the 
reference buildings (the green block in Figure 8). 
Building segments that are overlapped with the same 
reference building were compared using IoU. The 
segmented building with the largest IoU is kept. For R1, 
S2 is kept because IoU2 is larger than IoU1. For R2, S2 
is kept because IoU3 is larger than IoU4. For R3, S1 is 
kept because there is only one building segment. Next, 
the filtering process move to the building segments (the 
orange block in Figure 8). Reference buildings that are 
overlapped with the same building segment are 
compared using IoU. The reference building with the 
largest IoU is kept. For S1, R3 is kept because there is 
only one reference building. For S2, R2 is kept because 
IoU4 is larger than IoU2. After the filtering process, 
every building segment corresponds to one reference 
building. The results of the filtering process in Figure 8 
are R2 and S2; R3 and S1.  

2.7 Transferability 
The transferability of the trained model was 

validated on 10 random testing images (with the size of 
2500 pixels × 2500 pixels). The number of the testing 
images in each city/county is listed in Table 4. Both 
pixel-based and polygon-based evaluation were also 
carried out in the transferability test. 
 
Table 4 The number of the testing images in different 

cities/ counties 
City/County Testing Image 

Taichung City 1 
Nantou County 1 

Changhua County 2 
Chiayi County 2 

Tainan City 1 
Kaohsiung City 2 
Pingtung County 1 

 

3. Results and Discussion 

3.1 Training Process 
It took 26 hours to train ENVINet5. To avoid 

overfitting problem, the training process was stopped at 
100 epochs since the training loss and the testing loss 
tend to diverge. The training process is shown in Figure 
9.  

During the training process, 10,000 patches 
extracted from the training images were input to 
ENVINet5, and all the patches were trained batch by 
batch within 100 epochs. The patches were bias 
selected and generated with the control of Class Weight 
and Patch Sampling Rate in EVNINet5. Furthermore, 
the minimum and the maximum value were set for 
Class Weight and Blur Distance. The values indicate 
the degree of bias selection on patches, and a decaying 
gradient from the edge of the features. The maximum 
value is applied when the training begins. This value 
gradually decreases to the minimum value when the 
training ends. The settings of the hyperparameters 
(including ENVINet5 proprietary hyperparameters) are 
list in Table 5. The training of ENVINet5 model was 
implemented on a workstation with NVIDIA GeForce 
RTX 2080 Ti GPU. 

 
Table 5 Hyperparameters of the model 

Patch size 512×512 
Batch size 64 

The number of patches 10,000 
Epoch 100 

Class Weight min:2; max:4 
Patch Sampling Weight 15 

Loss Weight 1.5 
Blur Distance min:0; max:15 
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Figure 9 Training process of ENVINet5 

 

3.2 Threshold of Probability 
Map 

The results of pixel-based and polygon-based 
evaluation were influenced by the threshold of 
probability map. Therefore, the probability threshold 
from 0.4 to 0.9 were tested in this study. In pixel-based 
evaluation, the value of precision increased and the 
value of recall decreased when the probability 
threshold is greater (Figure 10). 

 

 
Figure 10 The values of precision and recall with 

different probability thresholds 
 

In polygon-based evaluation, the larger the 
probability threshold, the higher the value of OER. On 
the contrary, the value of CER becomes lower when the 
probability threshold is smaller (Figure 11). The value 
of precision and OER were intentionally kept low with 
the expense of high recall and CER value because the 
ideal goal is not to miss any buildings from the high 
resolution satellite imagery. The trade-off of probability 
threshold is around 0.7 considering finding the most 
and correct building pixels and building segments. For 
the conservative estimate, the probability threshold was 
set as 0.6. The optimal probability threshold of 0.6 was 
also applied to the validation sets and testing data. 
 

 
Figure 11 The values of OER and CER with different 

probability thresholds 
 

3.3 Accuracy Assessment 
The pixel-based evaluation was carried out with 

the validation sets. The number of TP, FP, FN, and TN 
cases are shown in Table 6. 
 
Table 6 The calculation of TP, FP, FN, and TN cases in 

confusion matrix using the validation sets 
Reference 

Prediction building pixel non-building pixel 

building pixel 3556048 (TP) 1470905 (FP) 

non-building pixel 682058 (FN) 619290989 (TN) 
 

The values of assessment indices are 0.99, 0.71, 
0.84, and 0.77 respectively for accuracy, precision, 
recall, and F1 score. The results show that ENVINet5 
can find 84% of building pixels according to the value 
of recall. Next, the polygon-based evaluation was also 
carried out with the validation sets. Omission buildings, 
commission buildings, OER, and CER were computed. 
The results are shown in Table 7.  
 
Table 7 Statistics of omission and commission 

buildings with the computation of OER and 
CER using the validation sets 

Reference 
Prediction Number of building Error rate 

Reference building 5727 NA 
Omission building 484 8% 

Commission building 5044 88% 
 

Among 100 sub-images in the validation sets, 
5727 reference buildings were labelled manually. The 
values of omission buildings and the commission are 
484 and 5044. OER and CER are 8% and 88% 
respectively. In other words, ENVINet5 can find 92% 
of building segments according to OER. After applying 
the filtering process over many-to-one, one-to-many, 
and many-to-many case, 4770 buildings were kept as 
one-to-one correspondence. The IoU for every 
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correspondence of building segment and reference 
building was plotted into a histogram shown in Figure 
12. Most of the buildings have IoU gathering from 0.6 
to 0.9. 

 

 
Figure 12 Histogram for IoU using the validation sets, 

where number of buildings were reported for 
each IoU bin 

 

3.4 Transferability 
The trained model was validated on 10 random 

testing images for the transferability test. Both the 
pixel-based and the polygon-based evaluation were 
carried out. For the pixel-based evaluation, the number 
of TP, FP, FN, and TN cases are shown in Table 8. The 
values of assessment indices are 0.99, 0.77, 0.80, and 
0.78 respectively for accuracy, precision, recall, and F1 
score. 

 
Table 8 The calculation of TP, FP, FN, and TN cases in 

confusion matrix using the testing images 
Reference 

Prediction building pixel non-building pixel 

building pixel 537392 (TP) 182442 (FP) 
non-building pixel 124752 (FN) 61655414 (TN) 

 

For the polygon-based evaluation, the numbers of 
omission building and commission building with the 
calculation of OER and CER are shown in Table 9. 808 
buildings were labelled manually among 10 random 
testing images. The values of omission buildings and 
the commission are 105 and 498.  OER and CER are 
12.99% and 61.63% respectively. 

 
Table 9 Statistics of omission and commission 

buildings with the computation of OER and 
CER using the testing images 

 Number of building Error rate 
Reference building 808 NA 
Omission building 105 13% 

Commission building 498 62% 

After applying filtering process over many-to-one, 
one-to-many, and many-to-many case among 10 testing 
images, 656 buildings were kept as one-to-one 
correspondence. The IoU for each correspondence of 
building segment and reference building was plotted 
into a histogram shown in Figure 13. Most of the 
buildings have IoU gathering from 0.6 to 0.9. The 
transferability test shows the stable performance of 
ENVINet5. 
 

 
Figure 13 Histogram for IoU using the testing images, 

where number of buildings were reported for 
each IoU bin 

 

3.5 Processing Considerations 
for Large Satellite Images 

The size of remote sensing imagery is usually very 
large, which is difficult to be segmented directly using 
most deep learning networks and their associated 
hardware (Huang et al., 2018). As a result, an image 
tiling and stitching technique was proposed as follows 
to deal with large satellite imagery. 

3.5.1 Image Tiling 
A large scale pansharpened agricultural image was 

tiled into several sub-images. The size of each sub-
image is 2500 pixels × 2500 pixels. The illustration of 
image tiling is shown in Figure 14.  

The tiling starts from the northwest of the image, 
moving from left to right and up to down. In Figure 
14(a), the red frame shows the movement of the tiling 
to the next sub-image horizontally and vertically. The 
stride was set as 2400 pixels in order to create overlap, 
which is used to preserve the objects along the sub-
image boundaries and prevent any miss (Ünel et al., 
2019). Because most of the height and width of the 
satellite image are not divisible by the size of sub-
image, the rightmost and the downmost sub-images 
(denoted as dotted grey frame) are not the full-size of 
2500 pixels × 2500 pixels. Therefore, the rightmost and 
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the downmost sub-images were moved left and up 
respectively to fit the boundary of the pansharpened 
agricultural image (denoted as green frame in Figure 
14(b) and 14(c), respectively). For the sub-images that 
contain only non-agricultural pixels (denoted as blue 
frame in Figure 14(d)), they are discarded to save the 
processing time for inference. 
 

 
Figure 14 Illustration of image tiling using the 

pansharpened agricultural image from Yilan (a) 
movement of tiling with the stride of 2400 
pixels horizontally and vertically; (b) 
rightmost sub-image moving left to fit the 
boundary of the pansharpened agricultural 
image; (c) downmost sub-image moving up to 
fit the boundary of the pansharpened 
agricultural image; (d) sub-image contains 
only non-agriculture pixels (denoted as black 
colour) 

 

3.5.2 Image Stitching 
Image stitching is the process that combine images 

with overlap and form a large image with high 
resolution (Wang & Yang, 2020). The way of stitching 
in this study was to compute the mean value of the 
overlapping pixels within the sub-images. This is to 
prevent any miss of buildings along the boundaries of 
the sub-images. Since the values of the pixel are 
probability, it is convenient and efficient to calculate. 
The stitching process was conducted using the “Mosaic 
To New Raster” tool in ArcMap. In Figure 15(a), one 
of the pansharpened agricultural images (with the size 
of 44688 pixels × 44836 pixels) across Nantou and 
Hualien County is shown as an example. The image 
was tiled into several sub-images and the inference 
result of each sub-image was stitched together to create 
a large probability map (Figure 15(b)). 

 
Figure 15 Results of image stitching using the 

pansharpened agricultural image across 
Nantou and Hualien County (a) a 
pansharpened agricultural image across 
Nantou and Hualien County; (b) a large 
probability map stitched by the inference 
results of each sub-image tiled from (a) 

 

The advantage of calculating the mean value of the 
overlapping pixels is to produce finer building borders. 
Due to the different extent of the sub-images, the 
inference result of the overlaps can be different. Since 
the overlaps between sub-images have been inferenced 
twice or four times by the trained model, averaging the 
inference results can balance different probabilities and 
yield smoother borders. The large probability map was 
post-processed using the proposed methods in section 
2.6 to obtain building segments. Building borders with 
and without calculating the mean value of overlapping 
pixels were shown in Figure 16. 
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Figure 16 Building borders with and without 

calculating the mean value of overlapping 
pixels in the overlap of the sub-images (a) 
overlap generated from four sub-images; (b) a 
building within the overlap; (c) Borders of 
building segments calculating the mean value 
of the overlapping pixels; (d) Borders of 
building segments without calculating the 
mean value of the overlapping pixels 

 

3.6 Time Cost Comparison 
Automation of ENVINet5 improved the efficiency 

of building segmentation using high resolution satellite 
imagery. However, manual labelling is still 
irreplaceable due to the potential OER and CER. 
Therefore, a hybrid way of manual labelling with the 
aid of the deep learning results was carried out. The 
results of ENVINet5 were utilized as an additional 
layer that helps to locate the buildings, which is helpful 
for the manual labelling process. The hybrid method 
was compared with manual labelling based on the time 
cost. In this study, 75 random sub-images (with the size 
of 2500 pixels × 2500 pixels) were assigned equally to 
3 professional data labellers. Each sub-image was 
labelled twice by the same data labeller. The first time 
was to label manually, and the second time was to label 
using the hybrid way. In case that the same sub-image 
was labelled twice in a short time, data labellers were 
required to label all the assigned images manually first 
before labelling using the hybrid method. The time 
spent on labelling using both methods were counted. 
The result is shown in Table 10. 

For all the 75 sub-images, manual labelling took 
1622 minutes and the hybrid way took 1504 minutes to 
complete. The result shows that manual labelling 
consume 7.3% more time than the hybrid method. It’s 

expected that the time cost for the manual labelling will 
increase obviously because fatigue can be triggered 
when dealing with large satellite images.  And, the 
efficiency for labelling with the aid of deep learning 
results will highly improve.  

 
Table 10 Time cost for assigned sub-images counted on 

each data labeller using the manual and the 
hybrid method 

 
 

4.  Conclusions 
In this study, the feasibility of building 

segmentation from high resolution Pléiades 
pansharpened imagery in agricultural area based on 
deep learning approach was demonstrated. ENVINet5 
was trained on random 500 sub-images (with the size 
of 2500 pixels × 2500 pixels) from 9 cities/ counties 
around Taiwan due to various building patterns. Each 
building pattern was labelled manually in a consistent 
building polygon as the reference data. In the training 
process, four proprietary hyperparameters were 
introduced to yield fine building borders. Four 
proprietary hyperparameters include Class Weight, 
Patch Sampling Rate, Loss Weight, and Blur Distance. 
The inference result from ENVINet5 is a probability 
map, which was post-processed to obtain building 
segments. Post-processing includes four steps: (1) 
thresholding, (2) vectorization, (3) keep building 
polygons, and (4) filling holes of building polygon.   

To validate the trained model, both pixel-based 
and polygon-based evaluation were carried out. For the 
pixel-based evaluation, the trained model was validated 
by pixels within each sub-image in the validation sets. 
The results reached 0.99, 0.71, 0.84, and 0.77 
respectively for accuracy, precision, recall, and F1 
score. According to the value of recall, ENVINet5 can 
find 84% of building pixels. For the polygon-based 
evaluation, the number and the quality of the building 
segments were analysed. Six different cases were 
considered, which are omission building, commission 
building, one-to-one, many-to-one, one-to-many, and 
many-to-many (correspondence). OER, and CER were 
computed to show the buildings that are missed and 
overpredicted from ENVINet5. The result of OER and 
CER are 8% and 88%. According to the value of OER, 
ENVINet5 can find 92% of building segments. Next, 
the segmentation quality of each building segment was 
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evaluated by comparing with the reference data using 
IoU. Since not every case is one-to-one correspondence, 
the filtering process is needed. After filtering process, 
4770 buildings were kept as one-to-one correspondence 
within validation sets, and most of the building 
segments have IoUs between 0.6 and 0.9. 

For the transferability test of the model, 10 
random testing images were collected from Taichung to 
Pingtung cities/counties counter clockwise around 
Taiwan. The values of assessment indices, OER, CER, 
and the statistics of IoUs for the building segments have 
shown the stability and performance of ENVINet5. 
Moreover, an image tiling and stitching technique was 
proposed to deal with the large satellite image across 
Nantou and Hualien County. Finally, the time cost of 
manual labelling and the hybrid way were compared by 
labelling 75 random sub-images twice. The time was 
counted by three professional data labellers. The results 
showed that the hybrid method cost 7.3% less time than 
manual labelling. And it is expected that more time can 
be saved using the hybrid way when dealing with large 
satellite images because the level of fatigue will 
increase. 
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應用深度學習於高解析衛星影像臺灣農業區建物分塊 
 

劉良逸1   王驥魁 2*   黃安德 3 

摘要 
臺灣的可耕地面積有限，清查建物的面積有助於了解土地利用的狀況。為了瞭解建物在臺灣農業區

所佔的總面積，現有的做法之一是透過高解析衛星影像進行人工辨識，此法可以掌握建物的邊界、改善現

地調查的不便。然而，卻需要大量人力資源的投入。過去的研究顯示，深度學習的方法可以有效地在高解

析衛星影像進行建物分塊。因此，本研究使用 ENVINet5 深度學習模型及 Pléiades 彩色融合影像進行訓

練，針對臺灣的農業區進行建物分塊。因為各地區的建物型態皆不相同，所以本研究使用九個不同的縣市

的影像進行訓練，每張訓練影像的尺寸為 2500 像素× 2500 像素。模型的評估是透過驗證集中的像素以

及分塊後的建物多邊形進行計算。前者結果顯示，經訓練的模型可以找出 84%的建物像素；後者計算了

建物多邊形的數量，並將其與參考建物以 IoU (Intersection of Union) 做比較。成果顯示，該模型可以在影

像上偵測且分塊 92%的建物，其 IoU 集中於 0.6 到 0.9 之間。該模型也以測試集做可轉移性試驗。另外，

本研究提出了影像切圖與拼接的方法以處理大範圍的衛星影像。最後，我們將 ENVINet5 的成果輔助人工

辨識建物，可以節省 7.3% 的時間成本。 

 

關鍵詞：建物分塊、深度學習、高解析衛星影像 
 


