30卷/4期

30卷/4期

華藝線上圖書館

Pages:

233-253

論文名稱

比較 PS-InSAR 與 SBAS-InSAR 技術應用於監測山區地表變位–以仁愛鄉為例

Title

Comparison of PS-InSAR and SBAS-InSAR Techniques in Monitoring Surface Deformation in Mountainous Areas: A Case Study in Ren'ai Township

作者

施竣仁、莊忠翰、蔡慧萍

Author

Jun-Ren Shi, Zhong-Han Zhuang, Hui-Ping Tsai

中文摘要

傳統崩塌監測技術與儀器受空間限制,本研究應用遙感之合成孔徑雷達干涉技術(Interferometric Synthetic Aperture Radar, InSAR)實現山區地表變位大範圍監測,採用永久散射體雷達干涉(Persistent Scatterer InSAR, PS-InSAR)與短基線子集差分干涉法(Small Baseline Subset-InSAR, SBAS-InSAR),以臺灣南投縣仁愛鄉為示範區,透過2017年間Sentinel-1A衛星共30幅升軌雷達影像,比較兩種多時序InSAR成果於地表變位監測的適用性,並與全球導航衛星系統(Global Navigation Satellite Systems, GNSS)數據進行相關性分析。結果顯示,PS-InSAR及SBAS-InSAR在LSAN測站皆呈現顯著正相關,相關係數分別為0.486及0.399,均方根誤差為5.004 mm及7.685 mm。SBAS-InSAR能有效反映山區之實際崩塌空間分布與地表變位情況,顯示該技術對山區崩塌監測更具優勢。

Abstract

Traditional landslide monitoring techniques and instruments are limited by spatial constraints. This study applies remote sensing-based Interferometric Synthetic Aperture Radar (InSAR) technology to enable large-scale surface displacement monitoring in mountainous areas. Two multi-temporal InSAR approaches-Persistent Scatterer InSAR (PS-InSAR) and Small Baseline Subset-InSAR (SBAS-InSAR) -were adopted. Ren'ai Township in Nantou County, Taiwan, was selected as the demonstration area. A total of 30 ascending Sentinel-1A radar images from 2017 were used to compare the applicability of these two methods for surface displacement monitoring, and correlation analysis was conducted with Global Navigation Satellite Systems (GNSS) data. Both PS-InSAR and SBAS-InSAR exhibited statistically significant positive correlations at the LSAN GNSS station, with correlation coefficients of 0.486 and 0.399, and root mean square errors of 5.004 mm and 7.685 mm, respectively. The SBAS-InSAR results effectively captured the spatial distribution of actual landslides and surface deformation in the mountainous area, indicating that this technique may offer greater advantages for landslide monitoring in such complex terrains.

關鍵字

多時序合成孔徑干涉雷達、永久散射體雷達干涉、短基線子集差分干涉、地表變位

Keywords

MT-InSAR, PS-InSAR, SBAS-InSAR, Surface Displacement

附件檔名

華芸線上圖書館

https://www.airitilibrary.com/Article/Detail/10218661-N202510310006-00001

備註說明

N / A

Pages:

255-267

論文名稱

無人機視覺導航路徑規劃使用深度強化學習網路

Title

UAV Path Determination for Visual Navigation using Deep Reinforcement Learning

作者

黃珮瑄、林昭宏

Author

Pei-Hsuan Huang, Chao-Hung Lin

中文摘要

傳統無人飛行載具 (UAV) 路徑規劃側重於優化路徑長度與能源效率等多種指標。然而,在無 GPS 環境中,視覺定位的品質至關重要。本研究使用深度強化學習 (DRL) 框架並引入優先經驗回放的噪聲雙決策深度 Q 網絡 (Noisy D3QN with PER),影像匹配的特徵點整合到路徑規劃中,共同優化路徑的幾何效率與視覺穩健性。此架構能有效解決稀疏獎勵和訓練不穩定問題,提高價值估計準確性與探索效率。實驗結果顯示,不僅產生高效、動態平滑且視覺連續的軌跡,並且在單次訓練後能從多個起始點推斷路徑。除了計算效率的改進,亦能提升複雜環境中視覺定位的性能與穩定性,以提高導航精度。

Abstract

Traditional path planning algorithms for Unmanned Aerial Vehicles (UAVs) primarily optimize for geometric metrics such as path length and energy efficiency. However, in GPS-denied environments, where external positioning is unreliable, the quality of visual localization is paramount for mission success. This study introduces a novel Deep Reinforcement Learning (DRL) framework designed to co-optimize the UAV path for both geometric efficiency and visual localization robustness. Specifically, our method integrates the density of matched image feature points, extracted from post-processed aerial imagery, directly into the planning process, ensuring the generated trajectory passes through visually rich areas that enhance navigation accuracy. To tackle the path planning challenge and address issues related to sparse rewards and unstable training, we employ an advanced DRL architecture: Noisy Dueling Double DQN with Prioritized Experience Replay (Noisy D3QN with PER). This integration leverages Double DQN to refine value estimation, Dueling DQN to improve generalization, PER to enhance sample efficiency, and Noisy Networks to promote robust and efficient exploration. The proposed framework is implemented within a simulated 2.5D environment with a customized reward function that considers both UAV state parameters and terrain features. Experimental results demonstrate that the method generates efficient, visually coherent, and dynamically smooth trajectories. Crucially, it enables path inference for multiple independent missions from various starting points after a single training session, achieving superior computational efficiency compared to traditional geometric planners. This highlights the potential of integrating visual features into a reinforcement learning-based UAV path planning to significantly enhance visual localization performance in complex environments.

關鍵字

強化學習、無人機、深度Q網路(DQN)

Keywords

Reinforcement Learning, Unmanned Aerial Vehicle, Deep Q Network

附件檔名

華芸線上圖書館

https://www.airitilibrary.com/Article/Detail/10218661-N202510310006-00002

備註說明

N / A

Pages:

269-286

論文名稱

應用Geo-AI模型推估苗栗地區NO2濃度及影響因子貢獻解析

Title

Application of Geo-AI Modeling to Estimate NO2 Concentrations and Analyze Contributing Factors in Miaoli, Taiwan

作者

陳潔瑩、賴忻宜、曾于庭、吳治達

Author

Chieh-Ying Chen, Sin-Yi Lai, Yu-Ting Zeng, Chih-Da Wu

中文摘要

研究以苗栗縣為示範區,整合氣象、地面監測、衛星遙測、土地利用與通霄電廠排放等多源資料,建構逐時、50 m × 50 m 解析度之NO2濃度推估模型。採用XGBoost演算法SHAP遞增篩選機制,選取一小時滯後,模型R2 為0.80,RMSE為1.78 ppb。SHAP分析顯示NOx與道路密度為最主要驅動因子,台電固定源亦具區域影響力。多層次驗證證實模型對時間、空間與高污染情境皆具穩健表現。研究展現Geo-AI於中小型縣市空品推估之應用潛力,亦為風險預警與污染治理提供量化依據。

Abstract

This study takes Miaoli County as a demonstration area to develop a high-resolution NO2 estimation model by integrating multiple data sources, including meteorological data, ground monitoring, satellite remote sensing, land use, and data from the Tongxiao Power Plant. An hourly 50 m × 50 m resolution model was constructed using the XGBoost algorithm combined with a SHAP-based incremental feature selection mechanism, with lag1 (1-hour lag) identified as the optimal time delay. The model achieved an R2 of 0.80 and an RMSE of 1.78 ppb. SHAP analysis revealed that NOx and road density were the most influential predictors, while emissions from the power plant also exhibited regional impact. Multilevel validation confirmed the model’s robustness across temporal, spatial, and high-pollution scenarios. The results demonstrate the potential of Geo-AI in air quality estimation for small and medium-sized counties and provide a quantitative basis for risk warning and pollution control.

關鍵字

二氧化氮、地理人工智慧、機器學習、空間推估圖

Keywords

Nitrogen Dioxide, Geo-AI, Machine Learning, Spatial Estimation Map

附件檔名

華芸線上圖書館

https://www.airitilibrary.com/Article/Detail/10218661-N202510310006-00003

備註說明

N / A

Pages:

287-301

論文名稱

結合水文分析及UAV數值地表模型進行旱溪溢淹檢討

Title

Combining Hydrological Analysis and UAV Digital Surface Model for Han River Flood Risk Assessment

作者

施廷儒、王畊貴、蔡慧萍

Author

Ting-Ru Shi, Geng-Gui Wang, Hui-Ping Tsai

中文摘要

本研究主要貢獻為應用UAV數值地表模型提供精細的斷面資料,針對台中旱溪進行水文分析與洪水溢淹模擬。配合台中氣象站104年雨量資料,以五種機率分布模型推估一日最大暴雨量,經檢定與誤差分析,對數皮爾森三型為最佳模型。以符合旱溪實況之三角形單位歷線法進行洪水模擬,並利用HEC-RAS進行七種重現期距模擬。研究結果發現旱溪第四段於50年與100年洪水重現期距下有溢淹情形。本研究結合UAV數值地表模型提供精細的斷面資料,提升模擬精度與可靠度,分析成果可提供水利單位於河道整治與防洪規劃之參考。

Abstract

The primary contribution of this study lies in the application of UAV-derived digital surface models (DSMs) to refine cross-sectional data for hydrological analysis and flood inundation simulations in the Han River, Taichung City, Taiwan. Based on 104 years of rainfall records from the Taichung Weather Station, the one-day maximum rainfall was estimated using five probability distribution models. Goodness-of-fit tests and error analyses identified the Log-Pearson Type III distribution as the most appropriate. Flood hydrographs were then generated using the triangular unit hydrograph method, which provides a more accurate representation of the hydrological characteristics of the Han River. Flood condition was simulated in HEC-RAS under seven recurrence intervals, with the results indicating overtopping at Section Four of the Han River under the 50- and 100-year recurrence intervals. By integrating UAV-derived DSMs to improve cross-sectional accuracy, this study enhances the precision and reliability of flood simulation outcomes. The findings provide valuable references for river management and flood mitigation planning by water resource authorities.

關鍵字

旱溪、水文分析、UAV、數值地表模型

Keywords

Han River, Hydrological Analysis, UAV, DSM

附件檔名

華芸線上圖書館

https://www.airitilibrary.com/Article/Detail/10218661-N202510310006-00004

備註說明

N / A

更多學刊論文